Новости

Найдём площадь четырёхугольника без лишних вычислений

Год назад на канале «Этому не учат в школе» появилась задача с таким заголовком.

Суперголоволомка. Найти площадь центрального четырёхугольника

В прямоугольнике провели четыре отрезка, как показано на рисунке, получилось 6 треугольников и один четырёхугольник. Площади четырёх треугольников заданы: 32, 3, 8, 27. Определите площадь четырёхугольника.

Авторское решение приводит к долгим рассуждениям, результат которых зафиксирован итоговым кадром.

-2

Источник. https://dzen.ru/video/watch/65575f3089b0414f259ced23?ysclid=m5jrdgbuau273580686

Давайте решим эту задачу без лишних вычислений. Сделаем более правдоподобный рисунок, учитывая те вычисления, что провёл автор решения, пользуясь подобием треугольников, но тот же результат можно было получить и на неверном чертеже.

-3

Проведём в четырёхугольнике KLMN диагональ NL. Площади треугольников ABN и ALN равны, так как у них общее основание и равные высоты, проведённые к этому основанию.

Если из этих равных площадей вычесть поровну — по 8, то получим равные площади треугольников, обозначим их a. Аналогично получим равные площади треугольников, которые обозначим b.

Воспользуемся тем, что отношение BK : KN равно a : 8 и 32 : a. Решив пропорцию a : 8 = 32 : a, получим, что a = 16.

Аналогично, решив пропорцию b : 27 = 3 : b, получим: b = 9.

Искомая площадь равна a + b = 16 + 9 = 25.

Ответ. 25.

www.Shevkin.ru | © 2004 - 2019 | Копирование разрешено с ссылкой на оригинал